In energy space the model describes the interaction of free carriers with a distribution of trap states using Shockley-Read-Hall (SRH) theory. A 0D section of the model is depicted in figure 10, the free electron and hole carrier distributions are labeled as n free and p free respectively. The trapped carrier populations are denoted with n trap and p trap , they are depicted with filled red and blue boxes. SRH theory describes the rates at which electrons and holes become captured and escape from the carrier traps. If one considers a single electron trap, the change in population of this trap can be described by four carrier capture and escape rates as depicted in figure 10. The rate rec describes the rate at which electrons become captured into the electron trap, ![]() ![]() ![]()
![]() |
For each trap level the carrier balance equation
is solved, giving each trap level an independent quasi-Fermi level. Each point in position space can be allocated between 10 and 160 independent trap states. The rates of each process
,
,
, and
are give in table 1.
and
where
are the trap cross sections,
is the thermal emission velocity of the carriers, and
are the effective density of states for free electrons or holes. The distribution of trapped states (DoS) is defined between the mobility edges as
where ,
is the density of trap states at the LUMO or HOMO band edge
in states/eV and where
is slope energy of the density of states.
The value of
for any given trap level is calculated by averaging the DoS function over the energy (
) which a trap occupies:
The ocupation function is given by the equation,
![]() |
(19) |